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Time series microarray measurements of gene expressions have been exploited to discover genes involved in cell cycles. Due to
experimental constraints, most microarray observations are obtained through irregular sampling. In this paper three popular
spectral analysis schemes, namely, Lomb-Scargle, Capon and missing-data amplitude and phase estimation (MAPES), are
compared in terms of their ability and efficiency to recover periodically expressed genes. Based on in silico experiments for
microarray measurements of Saccharomyces cerevisiae, Lomb-Scargle is found to be the most efficacious scheme. 149 genes are
then identified to be periodically expressed in the Drosophila melanogaster data set.
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1. Introduction

The functioning of eukaryotic cells is controlled by accu-
rate timing of biological cycles, such as cell cycles and
circadian rhythms. These are composed of an echelon of
molecular events and checkpoints. At the transcription level,
these events can be quantitatively observed by measuring
the concentration of messenger RNA (mRNA), which is
transcribed from DNA and serves as the template for
synthesizing protein. To achieve this goal, in the microar-
ray experiments, high-throughput gene chips are exploited
to measure genome-wide gene expressions sequentially at
discrete time points. These time series data have three
characteristics. Firstly, most data sets are of small sample
size, usually not more than 50 data points. Large sample
sizes are not financially affordable due to high cost of gene
chips. Also the cell cultures lose their synchronization and
render meaningless data after a period of time. Secondly, the
data are usually evenly sampled and have many time points
missing. Thirdly, most data sets are customarily corrupted by
experimental noise and the produced uncertainty should be
addressed in a stochastic framework.

Extensive genome-wide time course microarray exper-
iments have been conducted on organisms such as Sac-

charomyces cerevisiae (budding yeast) [1], human Hela [2],
and Drosophila melanogaster (fruit fly) [3]. Budding yeast in
[1] has served as the predominant data source for various
statistical methods in search of periodically expressed genes,
mainly due to its pioneering publication and relatively larger
sample size compared with its peers. By assuming the signal
in the cell cycle to be a simple sinusoid, Spellman et al. [1]
and Whitfield et al. [2] performed a Fourier transformation
on the data sampled with different synchronization methods,
while Giurcaneanu [4] explored the stochastic complexity of
the detection mechanism of periodically expressed genes by
means of generalized Gaussian distributions. Ahdesmäki et
al. [5] implemented a robust periodicity testing procedure
also based on the non-Gaussian noise assumption. Alterna-
tively, Luan and Li [6] employed guide genes and constructed
cubic B-spline-based periodic functions for modeling, while
Lu et al. [7] employed up to three harmonics to fit the data
and proposed a periodic normal mixture model. Power spec-
tral density estimation schemes have also been employed.
Wichert et al. [8] applied the traditional periodogram on
various data sets. Bowles et al. [9] compared Capon and
robust Capon methods in terms of their ability to identify
a predetermined frequency using evenly sampled data sets,
under the assumption of a known period. Lichtenberg et al.
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[10] compared [1, 6, 7] while proposing a new score by
combining the periodicity and regulation magnitude. The
majority of these works dealt with evenly sampled data.
When missing data points were present, either the vacancies
were filled by interpolation in time domain, or the genes were
discarded if there were more than 30% data samples missing.

Biological experiments generally output unequally
spaced measurements. The major reasons are experimental
constraints and event-driven observation. The rate of
measurement is directly proportional to the occurrence of
events. Therefore, an analysis based on unevenly sampled
data is practically desired and technically more challenging.
While providing modern spectral estimation methods for
stationary processes with complete and evenly sampled
data [11], the signal processing literature has witnessed an
increased interest in analyzing unevenly sampled data sets,
especially in astronomy, in the last decades. The harmonics
exploited in discrete Fourier transform (DFT) are no longer
orthogonal for uneven sampling. However, Lomb [12] and
Scargle [13] demonstrated that a phase shift suffices to
make the sine and cosine terms orthogonal. The Lomb-
Scargle scheme has been exploited in analyzing the budding
yeast data set by Glynn et al. [14]. Schwarzenberg-Czerny
[15] employed one-way analysis of variance (AoV) and
formulated an AoV periodogram as a method to detect sharp
periodicities. However, it relies on an infeasible biological
assumption, that is, the observation duration covers many
cycles. Along with this line of research, Ahdesmäki et al. [16]
proposed to use robust regression techniques, while Stoica
and Sandgren [17] updated the traditional Capon method
to cope with the irregularly sampled data. Wang et al. [18]
reported a novel technique, referred to as the missing-data
amplitude and phase estimation (MAPES) approach, which
estimates the missing data and spectra iteratively through
the expectation maximization (EM) algorithm. In general,
Capon and MAPES methods possess a better spectral
resolution than Lomb-Scargle periodogram. In this paper,
we propose to analyze the performance of three of the most
representative spectral estimation methods: Lomb-Scargle
periodogram, Capon method, and the MAPES technique
in the presence of missing samples and irregularly spaced
samples. The following questions are to be answered in this
study: do technically more sophisticated schemes, such as
MAPES, achieve a better performance on real biological data
sets than on simpler schemes? Is the efficiency sacrificed in
using these advanced methods justifiable?

The remainder of this paper is structured as follows. In
Section 2, we introduce the three spectral analysis methods,
that is, Lomb-Scargle, Capon and MAPES. Hypothesis tests
for periodicity detection and the corresponding p-values are
also formulated. The multiple testing correction is discussed.
Section 3 presents simulation results. The performances of
the three schemes are compared based on published cell-
cycle and noncell-cycle genes of the Saccharomyces cerevisiae
(budding yeast). Then the spectral analysis for the data set
of Drosophila melanogaster (fruit fly) is performed, and
a list of 149 genes are presented as cycle-related genes.
The synchronization effects are also considered. Concluding
remarks and future works constitute the last section, and full

results are provided online in the supplementary materials
[19].

2. Methods

In this section, the Lomb-Scargle periodogram, Capon
method, and MAPES approach are introduced and com-
pared in terms of their features and implementation com-
plexity. The detailed derivations are omitted. As a general
notational convention, matrices and vectors are represented
in bold characters, while scalars are denoted in regular fonts.

2.1. Lomb-Scargle Periodogram

The deployment of Fourier transform and traditional peri-
odogram relies on evenly sampled data, which are projected
on orthogonal sine and cosine harmonics. The uneven
sampling ruins this orthogonality. Hence, the Parseval’s
theorem fails, and there exists a power discrepancy between
the time and frequency domains. When analyzing astronom-
ical data, which in general are collected at uncontrollable
observation times, Lomb [12] found that a phase shift of the
sine and cosine functions would restore the orthogonality
among harmonics. Scargle [13] complemented the Lomb’s
periodogram by exploiting its distribution. Since then, the
established Lomb-Scargle periodogram has been exploited in
numerous fields and applications, including bioinformatics
and genomics (see, e.g., Glynn et al. [14]).

Given N time-series observations (tl, yl), l = 0, . . . ,N−1,
where t stands for the time tag and y denotes the sampled
expression of a specific gene, the normalized Lomb-Scargle
periodogram for that gene expression at angular frequency ω
is defined as
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where y and σ̂2 stand for the mean and variance of the
sampled data, respectively, and τ is defined as

τ = 1
2ω

a tan

(
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. (2)

For evenly sampled data, the sampling interval Δ can be
expressed as

Δ = tl+1 − tl = tN−1 − t0
N − 1

, l = 0, . . . ,N − 2. (3)

The highest frequency, namely, the Nyquist frequency, is
1/(2Δ). Beyond this limit, the computed spectra repeat. For
unevenly sampled data, a straightforward way to introduce
the Nyquist frequency is by keeping the definition as in the
evenly sampled case, that is, using the averaged sampling
interval defined in the second equality of (3), as is employed
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in Glynn’s work [14]. Actually, Eyer and Bartholdi in [20]
proved that the highest frequency is much larger than 1/(2Δ).
Let δ be the greatest common divisor (gcd) for all intervals
tk − tl (k /= l), then the highest frequency that should be
searched is given by

fmax = ωmax

2π
= 1

2δ
. (4)

The number of probing frequencies is denoted by

˜N = tN−1 − t0
δ

+ 1, (5)

and the frequency grid can be defined in terms of the
following equation:

ωlδ = 2π
˜N
l, l = 0, . . . , ˜N − 1. (6)

Notice further that the spectra on the front and rear halves
of the frequency grid are symmetric since the microarray
experiments output real values.

Lomb-Scargle periodogram represents an efficient solu-
tion in estimating the spectra of unevenly sampled data sets.
Our simulation results also verify its superior performance
for biological data with small sample size and various
unevenly sampled patterns.

2.2. Capon Method

Capon method represents a modern power spectral estima-
tion technique that yields better spectral resolution com-
pared with traditional periodogram [11]. The original Capon
method tries to design a filter-bank by taking properties of
its data into account. Assuming N observations are equally
spaced with a sampling interval Δ, at a frequency ω, the
Capon filter is designed so that the power of the filter’s
output is minimized while the frequency ω is passed without
distortion. Solving this optimization problem provides the
spectrum estimate at frequency ω as

ΦC(ω) = 1
aH(ωΔ)R−1a(ωΔ)

, (7)

where the R stands for the data covariance matrix with a
dimension N0, which is also the bandwidth of the Capon
filter. The ancillary vector is defined as follows:

a(ω) = (1e jω · · · e jω(N0−1))T . (8)

Note that we have not included in this spectrum estimate
a scaling factor. However, the absence of this scaling factor
does not affect periodicity analysis for the genes. Therefore,
we neglect this scaling factor. The bandwidth parameter N0

cannot exceed �(N − 1)/2� to guarantee an existing R−1.
The larger the N0, the better the resolution of the obtained
spectra.

Recently, the Capon method has been updated to cope
with the presence of irregular samples [17]. The same
frequency grid denoted in (6) is employed. The Δ has to

be changed to δ, the greatest common divisor between any
two sampling times. In order to take advantage of the best
resolution, N0 is set to be equal to �( ˜N − 1)/2�, where
˜N is defined in (5). In our simulation, an estimate of the
autocorrelation matrix ̂R can be obtained from the Lomb-
Scargle periodogram. It can be represented by

̂R = 1
˜Nδ

˜N−1
∑

l=0

a
(

ωlδ
)

aH
(

ωlδ
)

ΦLS
(

ωl
)

. (9)

The Capon method is slightly more computationally
complex than Lomb-Scargle periodogram, and it usually
achieves a better performance in terms of resolution pro-
vided that there are sufficient samples. However, for highly
corrupted biological data with small sample size, this is not
true.

2.3. MAPES Method

Regular sampling can be treated as a case of missing data
as long as the sampling time tags share a greatest common
divisor. This constraint is satisfied in most biological exper-
iments and published data sets. The missing-data amplitude
and phase estimation (MAPES) method, proposed in [18], is
a nonparametric spectral estimation approach. It is robust to
error modeling and it deals with arbitrary data-missing pat-
terns as opposed to gapped or periodically gapped data, and
achieves a better spectral resolution in the sense of resolving
closely spaced spectral lines. However, the exploitation of
the expectation maximization (EM) algorithm sacrifices its
computational efficiency.

The data, yl, l = 0, . . . , ˜N , are assumed to be sampled
uniformly, however, only N data points are available and
there are ˜N − N missing data points. Noticeably, ˜N still
conforms to the definition in (5). The gene expression signal
with frequency ω can be modeled as

yl = α(ω)e jωl + εl(ω), l = 0, . . . , ˜N − 1, ω ∈ [0, 2π],
(10)

where α(ω) represents the complex amplitude of the sinu-
soidal component and εl(w) denotes the residual term. The
probing frequencies still follow (6). Employing the EM
algorithm, MAPES tries to iteratively assess the missing data,
and meanwhile to update the estimation of spectra and error.

The data vector y = (y0, . . . , y
˜N−1)T can be partitioned

into L overlapping subvectors, each with dimension M ×
1, and L = ˜N − M + 1. These subvectors constitute
the enhanced data vector ỹ(LM × 1), which assumes the
following expression:

ỹ =

⎛

⎜

⎜

⎝

ỹ0
...

ỹL−1

⎞

⎟

⎟

⎠

= Uγ + Vμ, (11)

where γ(N × 1) and μ(( ˜N − N) × 1) represent the
available and missing data, respectively, and U(LM × N)
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and V(LM × ( ˜N −N)) denote their selection matrices,
respectively. Alternatively, given U, V, and ỹ, the data vectors
γ, μ can be computed in the least-square (LS) sense as
follows:

γ = (UTU
)−1

UT ỹ = ˜U†ỹ, where ˜U† = (UTU
)−1

UT ,

μ = (VTV
)−1

VT ỹ = ˜V†ỹ, where ˜V† = (VTV
)−1

VT .
(12)

The residual vector and its covariance matrix are next defined

el(ω) = (εl(ω)εl+1(ω) · · · εl+M−1(ω)
)T

,
Q(ω) = E

(

el(ω)eHl (ω)
)

,
(13)

where E(·) denotes the expectation operator, and in practice
is replaced by a sample mean estimator. The following two
notations are also required by the definition of MAPES
power spectral estimator:
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In the ith EM iteration, the probability density function
(PDF) of the missing data vector μ conditioned on the
available data γ and other context parameters is complex
Gaussian with mean and variance denoted by (b, K) as
follows:

bi(ω)

= ˜UTρ(ω)αi(ω)+ ˜UTDi(ω)˜V(˜VTDi(ω)˜V)
−1

(γ− ˜VTρ(w)αi(w)),

Ki(ω)

= ˜UTDi(ω)˜U−˜UT
Di(ω)˜V(˜VTDi(ω)˜V)

−1
˜VTDi(ω)˜U.

(15)

Then the estimates for spectral magnitude α(ω) and residual
matrix Q are updated in terms of equations

αi+1(ω) = aH(ω)S−1(ω)Z(ω)
aH(ω)S−1(ω)a(ω)

,

Qi+1(ω) = S(ω) +
(

αi+1(ω)a(ω)− Z(ω)
)

×(αi+1(ω)a(ω)− Z(ω)
)H

,

(16)

where the auxiliary matrices are defined as follows:
⎛
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zlzHl − Z(ω)ZH(ω). (19)

In (19), Γ0, . . . ,ΓL−1 are M×M subblock matrices located on
the main diagonal of matrix UKUT .

Finally, the MAPES power spectral density estimator can
be expressed as

ΦMAPES(ω) =
∣

∣α(ω)
∣

∣

2

˜N
. (20)

Actually, in our in silico experiments, assuming ˜N ≤
50, MAPES yields an estimate of power spectral about two
orders of magnitude more computational time (roughly
about one hundred times slower) than Lomb-Scargle and
Capon methods. Also, the simulation results do not indicate
any performance improvement for MAPES in terms of the
ability to discover published cell cycle genes. A more detailed
comparison between these schemes will be presented in the
simulation section.

2.4. Periodicity Test

Based on the obtained power spectral density, each gene
is to be classified as either a cyclic gene or noncyclic one.
The null hypothesis is usually formed to assume that the
measurements are generated by a Gaussian noise stochastic
process. For a general periodogram or power spectral density
estimator Φ(ω), Fisher’s test can be exploited to examine the
significance of the detected peak. The Fisher’s test statistic is
defined as

T = max1≤k≤N0Φ(ωk)
N−1

0

∑

1≤k≤N0
Φ(ωk)

, (21)

where N0 = �( ˜N − 1)/2� since the spectra on the defined
frequency grid are symmetric. The p-value for detecting the
largest peak is given by [21]

P(T > t) = 1− e−N0e−t . (22)

A rejection of the null hypothesis based on a p-value
threshold implies that the power spectral density contains
a frequency with magnitude substantially greater than the
average value. This indicates that the time series data contain
a periodic signal and the corresponding gene is cyclic in
expression. Notice also that a more accurate estimation
method for the p-values can be found in Fisher [22] or
Brockwell and Davis [23]. The rank of genes ordered by their
p-values is of additional importance and it helps to hedge the
risk of dichotomous decisions.

For the Lomb-Scargle periodogram, ΦLS(ω) is exponen-
tially distributed under the null hypothesis [13], a result
which is also exploited in [14]. However, this exponential
distribution is not applicable for a general power spectral
density. Therefore, Fisher’s test is employed to perform the
comparison among different spectral schemes. Our simula-
tion results also show that for Lomb-Scargle periodogram,
the gene ranks generated by Fisher’s test do not differ much
from that produced by the exponential distribution. Finally,
we remark that other periodicity detection tests exist, as
indicated by the robust Fisher test [24], the likelihood ratio
test, and the χ2 test [21].
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2.5. Multiple Testing Correction

In order to prevent the false positives from overwhelming the
true positives, the multiple testing correction, as proposed
in [25, 26], is performed to control the false discovery rate
(FDR). For each of measured n genes, the periodicity is
tested and a p-value is generated. All p-values are sorted in
ascending order with the smallest ith p-value denoted by p(i).
Assume an estimate to the number of noncyclic genes among
all n genes is n̂0, and the testing procedure preserves k genes
which have lowest p-values, then an estimate of FDR can be
formulated as

�FDRk = p(k)n̂0

k
, (23)

where the numerator is an estimate of the number of false
positives. Since generally periodic genes only occupy a small
portion of all genes, the n̂0 is set to n directly in our
simulation. Such an action brings a slightly larger estimate.
There exist other statistical methods to estimate n̂0, for
example, [26].

The �FDR is not a monotonic function of k, the number
of preserved genes. This property makes it tough to choose a
p-value threshold. To combat this, the q-value is proposed in
[25] as following:

qk = min
k≤ j≤n

�FDR j . (24)

The q-value is a monotonically increasing function with
respect to k. The FDR can be controlled via specifying the
q-value threshold as τ, through which the number of genes
to preserve can then be derived as

k = max
1≤ j≤n

qj ≤ τ. (25)

3. Simulation Results

Our in silico experiments are first performed on the Sac-
charomyces cerevisiae (budding yeast) data set. The Lomb-
Scargle, Capon, and MAPES are compared. Then we proceed
to analyze the Drosophila melanogaster (fruit fly) data set.

3.1. Simulation on Saccharomyces Cerevisiae

The performance of the three schemes is evaluated based
on the Saccharomyces cerevisiae (budding yeast) data set
reported by Spellman et al. [1]. In the biological experi-
ments, the mRNA concentrations of more than 6 000 open
reading frames (ORFs) were measured for the yeast strains
synchronized by using four different methods, namely, α
factor, cdc15, cdc28, and elutriation. The data set contained
73 sampling points, while there existed missing observations
for some genes.

The literature has provided prior knowledge about the
yeast cell cycle genes: Spellman et al. [1] enumerated 104
cell cycle genes that were verified in previous biological
experiments, while Lichtenberg et al. [27] summarized 105
genes that were not involved in the cell cycle. By exploiting

these two control sources, we can evaluate the true and false
positives generated by the three spectral estimation methods.

The comparison procedure is as follows: based on the
given data set, the three schemes perform to preserve a
prespecified number of genes. These genes are marked as
cell cycle genes and are compared with two control gene
sets, from which the number of positives are counted. If a
preserved gene also exists in the gene set which has been
verified to be cell cycle regulated, this hit is counted as a true
positive. On the other hand, if the preserved gene appears in
the gene set which has been corroborated to be not involved
in the cell cycle, this hit is counted as a false positive. Notice
that since we expect the noncell cycle genes to be the majority
of all measured genes, but the verified noncell cycle genes
are only a small portion of all the genes, the false positives
from verified noncell cycle genes only provide a reference
but not a significant knowledge of the false positives. Because
the three algorithms perform similarly for all four data sets,
only simulation outcomes for cdc15 are presented here to
exemplify the general results. The cdc15 data set contained
24 time points sampled from t0 = 10 minutes to tN−1 =
290 minutes. The greatest common divisor (gcd) for all
time intervals is δ = 10 minutes. Therefore N = 24 and
˜N = 29. The bandwidth N0 of Capon method is 14 while
the subvector length M of MAPES is equal to N0. All three
schemes, that is, Lomb-Scargle, Capon, and MAPES, are
applied on the data set.

The in silico results based on cdc15 data set are illustrated
in Figure 1. When the number of preserved genes increases,
all three schemes increase their ability to identify more cell
cycle genes with more false discoveries as a tradeoff. Lomb-
Scargle achieves the best performance in terms of identifying
the highest number of true positives and producing lowest
number of false positives, while MAPES was the worst with
respect to these two metrics.

To test the algorithm performance on the highly cor-
rupted data, two in silico experiments are performed. Firstly,
one third of all measurements is randomly set to be missing.
The results are organized in Figure 2. Secondly, a gene’s
sampled data are added with Gaussian noise of mean 0 and
variance equal to half of variance of the gene’s measurements.
The outcomes of the artificially noised data are presented in
Figure 3. Compared with Figure 1, all of them identify less
verified genes due to the artificially added noise or missed
data. The false positives are controlled at a low level. The
three algorithms behave in a similar pattern with respect to
the increasing number of preserved genes.

Above all, Lomb-Scargle scheme always identifies the
largest number of cell cycle genes that have been verified
in previous biological experiments. Due to its simplicity, we
recommend the use of this simplest method.

3.2. Simulation on Drosophila Melanogaster

The Drosophila melanogaster (fruit fly) is selected as our
research target because it is a well-studied, relatively simple
organism with a short generation time and only 4 pairs of
chromosomes. In addition, 75% of human diseases have their
counterparts in fruit fly, and 50% of fruit fly proteins have
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Figure 1: Performance comparison based on cdc15 data set.

their mammalian analogs [28]. These make the fruit fly an
excellent model for the research of human diseases. In the
literature for the fruit fly, most of the research work was
conducted through experimental biological methods, and
the computational analysis tools have not been fully explored
for the detection of periodically expressed genes. Our in silico
experiments are performed on the fruit fly data set published
by Arbeitman et al. [3]. With the usage of cDNA microarrays,
the RNA expression levels of 4028 genes were measured.
These stand for about one third of all found fruit fly genes.

In Arbeitman’s experiments, 75 sequential sampling
points were observed, starting right after fertilization and
through embryonic, larval, pupal, and early days of adult-
hood. The time series data during the embryonic stage are
analyzed. The embryonic stage gives us insight into the
developmental process, that is, how the fruit fly grows from
a zygote to a complex organism with cell specialization. The
embryonic data takes the instant of egg lay as the time origin.
30 time points were sampled from t0 = 0.5 hour to tN−1 =
23.5 hours. The greatest common divisor (gcd) for all time
intervals is δ = 0.5 hour. Therefore N = 30 and ˜N = 47. The
best candidate, Lomb-Scargle, is applied on the data set.

The top 149 genes with the smallest p-values are selected
and conferred to be periodic with the highest confidence. To
remove the effects of DC component, the first two frequency
probes are filtered out. The q-value is controlled to be less
than 0.2. The detailed results are organized into a spreadsheet
and provided in the supplementary materials [19]. The
majority of genes are associated with a periodicity of about
20 hours, we hypothesize that a portion of them are related
to the circadian rhythm. The cell cycle genes are not fully
detectable because in the embryonic stage the cells proliferate
very fast in minutes, however the implemented sampling rate
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Figure 2: Performance comparison when one third of measure-
ments is randomly set to be missing.

was not fast enough to capture the phenomenon in the cell
cycle.

3.3. Discussion of synchronization Effects

In order to measure a valid sample, the cell culture has
to be synchronized, in other words, all cells within the
culture should be homogeneous in all aspects, for example,
cell size, DNA, RNA, protein, and other cellular contents,
and should also mimic the unperturbed cell cycle. Cooper
in [29] argued that the ideal synchronization is a mission
impossible due to the different dimensions, like cell size
and DNA content, that cannot be controlled at the same
time. Therefore, current popular synchronization methods,
like serum starvation and thymidine block, are only one-
dimensional synchronization techniques and fail to achieve
a truly global synchronization. Cooper also argued it was
fully possible that the discovered periodicity was completely
caused by chance or by the specific synchronization method
employed. The available fruit fly data set was sampled
with the synchronization yielded by the Cryonics method.
Cryonics is the low-temperature preservation method of
tissues in which all cell activities are believed to be halted. The
cells frozen with liquid nitrogen are compared with control
cells, that were formaldehyde fixed, to ensure that the cells
were at the expected developmental stages during sampling.
This synchronization method differentiates itself from the
one-dimensional methods employed in [1, 2], which have
been shown in [29] to present cell cultures that are not
actually representative of the cell cycle. Though the damage
caused by the freezing was not known, the fly’s development
assumed true synchronization with the control cells at every
developmental check point. This provided enough evidence
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Figure 3: Performance comparison when noise is intentionally
added.

to consider Arbeitman’s data set out of the scope of the issues
raised in [29]. Therefore, one can claim with confidence that
any discovered periodicity will not have risen from chance
fluctuations alone.

4. Conclusions

Three of the most representative spectral analysis methods,
namely, Lomb-Scargle, Capon, and missing-data amplitude
and phase estimation (MAPES) methods, are compared
in terms of their performance for detecting the period-
ically expressed genes in Saccharomyces cerevisiae. Lomb-
Scargle and Capon methods are computationally efficient
while MAPES involves extensive matrix calculations and
the iterative expectation maximization (EM) step. Our in
silico experiments revealed that the simplest method, Lomb-
Scargle, outperforms more sophisticated Capon and MAPES.
Compared with the other two, Lomb-Scargle method is able
to identify more published cyclic genes. This discrepancy
between methods is mainly attributed to the data features,
such as the small sample size, large proportion of missing
samples, and samples highly corrupted by noise. In addition,
the computational complexity sacrificed in MAPES for
achieving high resolution is not justifiable in the context
of gene microarray data. Thus, the computationally simpler
methods are more fit for the small sample size scenarios.

The computational results also provide novel insights
into the data reported by Drosophila melanogaster experi-
ments. A list of 149 genes are identified to express periodi-
cally. Their relation with the biological processes are yet to
be validated. Our future works also include the development
of a comprehensive time-frequency analysis framework for

time series microarray data. The small sample size represents
another great challenge. Besides, a cross-species study is
also desired to examine the relations between fruit fly and
homosapiens genes.
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